If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5^2+4^2=c^2
We move all terms to the left:
5^2+4^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+41=0
a = -1; b = 0; c = +41;
Δ = b2-4ac
Δ = 02-4·(-1)·41
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*-1}=\frac{0-2\sqrt{41}}{-2} =-\frac{2\sqrt{41}}{-2} =-\frac{\sqrt{41}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*-1}=\frac{0+2\sqrt{41}}{-2} =\frac{2\sqrt{41}}{-2} =\frac{\sqrt{41}}{-1} $
| 4y-22+5y=23 | | -33=-u/3 | | 17x=164 | | t+14=70 | | 9y-3+4y=23 | | 8=4t−4 | | 72=9w−83 | | 5x/4+3x/4=180 | | -4x-10+12x=10 | | 36.25-d=40.3 | | 2x+24=9+18 | | 72=9(w−83) | | 2x+24=9+9 | | 10-5x+6x=21 | | (2x+10)(2x+20)=400 | | 11/12x+3/10=7/15x-1/6 | | (2x+10)+(2x+20)=400 | | 14/3x=28 | | 5p+9=19.5 | | 180=6x+5+4x+45∘ | | 1620-0.45x^2=0 | | 3x+19+5x=115 | | 64+27+x+97=180 | | -15=u/3-3 | | 4x−5=2−x | | n-40=160 | | 50-3x=10 | | 3x=7.50-3x | | x+3(x-1)=7 | | 6×+5y=55 | | 1y*1y=2 | | 14-3x/5=1 |